3.10.63 \(\int \frac {(a+b x^2)^{5/2}}{x^4 \sqrt {c+d x^2}} \, dx\) [963]

Optimal. Leaf size=336 \[ \frac {\left (3 b^2 c^2+7 a b c d-2 a^2 d^2\right ) x \sqrt {a+b x^2}}{3 c^2 \sqrt {c+d x^2}}-\frac {2 a (3 b c-a d) \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 c^2 x}-\frac {a \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{3 c x^3}-\frac {\left (3 b^2 c^2+7 a b c d-2 a^2 d^2\right ) \sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 c^{3/2} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}+\frac {b (9 b c-a d) \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 \sqrt {c} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}} \]

[Out]

1/3*(-2*a^2*d^2+7*a*b*c*d+3*b^2*c^2)*x*(b*x^2+a)^(1/2)/c^2/(d*x^2+c)^(1/2)-1/3*(-2*a^2*d^2+7*a*b*c*d+3*b^2*c^2
)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*(b*
x^2+a)^(1/2)/c^(3/2)/d^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(d*x^2+c)^(1/2)+1/3*b*(-a*d+9*b*c)*(1/(1+d*x^2/c)
)^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*(b*x^2+a)^(1/2)/c^(
1/2)/d^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(d*x^2+c)^(1/2)-1/3*a*(b*x^2+a)^(3/2)*(d*x^2+c)^(1/2)/c/x^3-2/3*a
*(-a*d+3*b*c)*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/c^2/x

________________________________________________________________________________________

Rubi [A]
time = 0.20, antiderivative size = 336, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {485, 594, 545, 429, 506, 422} \begin {gather*} -\frac {\sqrt {a+b x^2} \left (-2 a^2 d^2+7 a b c d+3 b^2 c^2\right ) E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 c^{3/2} \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {x \sqrt {a+b x^2} \left (-2 a^2 d^2+7 a b c d+3 b^2 c^2\right )}{3 c^2 \sqrt {c+d x^2}}+\frac {b \sqrt {a+b x^2} (9 b c-a d) F\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 \sqrt {c} \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {2 a \sqrt {a+b x^2} \sqrt {c+d x^2} (3 b c-a d)}{3 c^2 x}-\frac {a \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{3 c x^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^(5/2)/(x^4*Sqrt[c + d*x^2]),x]

[Out]

((3*b^2*c^2 + 7*a*b*c*d - 2*a^2*d^2)*x*Sqrt[a + b*x^2])/(3*c^2*Sqrt[c + d*x^2]) - (2*a*(3*b*c - a*d)*Sqrt[a +
b*x^2]*Sqrt[c + d*x^2])/(3*c^2*x) - (a*(a + b*x^2)^(3/2)*Sqrt[c + d*x^2])/(3*c*x^3) - ((3*b^2*c^2 + 7*a*b*c*d
- 2*a^2*d^2)*Sqrt[a + b*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*c^(3/2)*Sqrt[d]*Sqrt[
(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2]) + (b*(9*b*c - a*d)*Sqrt[a + b*x^2]*EllipticF[ArcTan[(Sqrt[d]
*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*Sqrt[c]*Sqrt[d]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 485

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[c*(e*x)^(
m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q - 1)/(a*e*(m + 1))), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)
*(a + b*x^n)^p*(c + d*x^n)^(q - 2)*Simp[c*(c*b - a*d)*(m + 1) + c*n*(b*c*(p + 1) + a*d*(q - 1)) + d*((c*b - a*
d)*(m + 1) + c*b*n*(p + q))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0]
 && GtQ[q, 1] && LtQ[m, -1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 594

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*g*(m + 1))), x] - Dist[1/(a*g^n*(m + 1
)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f)*(m + 1) + e*n*(b*c*(p + 1) + a*d*q)
 + d*((b*e - a*f)*(m + 1) + b*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && IGtQ[n
, 0] && GtQ[q, 0] && LtQ[m, -1] &&  !(EqQ[q, 1] && SimplerQ[e + f*x^n, c + d*x^n])

Rubi steps

\begin {align*} \int \frac {\left (a+b x^2\right )^{5/2}}{x^4 \sqrt {c+d x^2}} \, dx &=-\frac {a \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{3 c x^3}+\frac {\int \frac {\sqrt {a+b x^2} \left (2 a (3 b c-a d)+b (3 b c+a d) x^2\right )}{x^2 \sqrt {c+d x^2}} \, dx}{3 c}\\ &=-\frac {2 a (3 b c-a d) \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 c^2 x}-\frac {a \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{3 c x^3}+\frac {\int \frac {a b c (9 b c-a d)+b \left (3 b^2 c^2+7 a b c d-2 a^2 d^2\right ) x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 c^2}\\ &=-\frac {2 a (3 b c-a d) \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 c^2 x}-\frac {a \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{3 c x^3}+\frac {(a b (9 b c-a d)) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 c}+\frac {\left (b \left (3 b^2 c^2+7 a b c d-2 a^2 d^2\right )\right ) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 c^2}\\ &=\frac {\left (3 b^2 c^2+7 a b c d-2 a^2 d^2\right ) x \sqrt {a+b x^2}}{3 c^2 \sqrt {c+d x^2}}-\frac {2 a (3 b c-a d) \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 c^2 x}-\frac {a \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{3 c x^3}+\frac {b (9 b c-a d) \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 \sqrt {c} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}-\frac {\left (3 b^2 c^2+7 a b c d-2 a^2 d^2\right ) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{3 c}\\ &=\frac {\left (3 b^2 c^2+7 a b c d-2 a^2 d^2\right ) x \sqrt {a+b x^2}}{3 c^2 \sqrt {c+d x^2}}-\frac {2 a (3 b c-a d) \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 c^2 x}-\frac {a \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{3 c x^3}-\frac {\left (3 b^2 c^2+7 a b c d-2 a^2 d^2\right ) \sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 c^{3/2} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}+\frac {b (9 b c-a d) \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 \sqrt {c} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 3.17, size = 261, normalized size = 0.78 \begin {gather*} \frac {a \sqrt {\frac {b}{a}} d \left (a+b x^2\right ) \left (c+d x^2\right ) \left (-a c-7 b c x^2+2 a d x^2\right )+i b c \left (-3 b^2 c^2-7 a b c d+2 a^2 d^2\right ) x^3 \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )-i b c \left (-3 b^2 c^2+2 a b c d+a^2 d^2\right ) x^3 \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )}{3 \sqrt {\frac {b}{a}} c^2 d x^3 \sqrt {a+b x^2} \sqrt {c+d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)^(5/2)/(x^4*Sqrt[c + d*x^2]),x]

[Out]

(a*Sqrt[b/a]*d*(a + b*x^2)*(c + d*x^2)*(-(a*c) - 7*b*c*x^2 + 2*a*d*x^2) + I*b*c*(-3*b^2*c^2 - 7*a*b*c*d + 2*a^
2*d^2)*x^3*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] - I*b*c*(-3*
b^2*c^2 + 2*a*b*c*d + a^2*d^2)*x^3*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (
a*d)/(b*c)])/(3*Sqrt[b/a]*c^2*d*x^3*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.14, size = 583, normalized size = 1.74

method result size
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}\, \left (-\frac {a^{2} \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}{3 c \,x^{3}}+\frac {a \left (2 a d -7 b c \right ) \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}{3 c^{2} x}+\frac {\left (3 a \,b^{2}-\frac {b d \,a^{2}}{3 c}\right ) \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}-\frac {\left (b^{3}-\frac {a b d \left (2 a d -7 b c \right )}{3 c^{2}}\right ) c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}\, d}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(362\)
risch \(-\frac {a \sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}\, \left (-2 a d \,x^{2}+7 c \,x^{2} b +a c \right )}{3 c^{2} x^{3}}-\frac {b \left (-\frac {\left (2 a^{2} d^{2}-7 a b c d -3 b^{2} c^{2}\right ) c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}\, d}+\frac {a^{2} c d \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}-\frac {9 a b \,c^{2} \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}\right ) \sqrt {\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}}{3 c^{2} \sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(418\)
default \(\frac {\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}\, \left (2 \sqrt {-\frac {b}{a}}\, a^{2} b \,d^{3} x^{6}-7 \sqrt {-\frac {b}{a}}\, a \,b^{2} c \,d^{2} x^{6}+\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a^{2} b c \,d^{2} x^{3}+2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a \,b^{2} c^{2} d \,x^{3}-3 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{3} c^{3} x^{3}-2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a^{2} b c \,d^{2} x^{3}+7 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a \,b^{2} c^{2} d \,x^{3}+3 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{3} c^{3} x^{3}+2 \sqrt {-\frac {b}{a}}\, a^{3} d^{3} x^{4}-6 \sqrt {-\frac {b}{a}}\, a^{2} b c \,d^{2} x^{4}-7 \sqrt {-\frac {b}{a}}\, a \,b^{2} c^{2} d \,x^{4}+\sqrt {-\frac {b}{a}}\, a^{3} c \,d^{2} x^{2}-8 \sqrt {-\frac {b}{a}}\, a^{2} b \,c^{2} d \,x^{2}-\sqrt {-\frac {b}{a}}\, a^{3} c^{2} d \right )}{3 \left (b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c \right ) c^{2} \sqrt {-\frac {b}{a}}\, d \,x^{3}}\) \(583\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(5/2)/x^4/(d*x^2+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)*(2*(-b/a)^(1/2)*a^2*b*d^3*x^6-7*(-b/a)^(1/2)*a*b^2*c*d^2*x^6+((b*x^2+a)/a)
^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a^2*b*c*d^2*x^3+2*((b*x^2+a)/a)^(1/2)*((d
*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*b^2*c^2*d*x^3-3*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)
^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b^3*c^3*x^3-2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*Ellipti
cE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a^2*b*c*d^2*x^3+7*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a
)^(1/2),(a*d/b/c)^(1/2))*a*b^2*c^2*d*x^3+3*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a
*d/b/c)^(1/2))*b^3*c^3*x^3+2*(-b/a)^(1/2)*a^3*d^3*x^4-6*(-b/a)^(1/2)*a^2*b*c*d^2*x^4-7*(-b/a)^(1/2)*a*b^2*c^2*
d*x^4+(-b/a)^(1/2)*a^3*c*d^2*x^2-8*(-b/a)^(1/2)*a^2*b*c^2*d*x^2-(-b/a)^(1/2)*a^3*c^2*d)/(b*d*x^4+a*d*x^2+b*c*x
^2+a*c)/c^2/(-b/a)^(1/2)/d/x^3

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(5/2)/x^4/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^(5/2)/(sqrt(d*x^2 + c)*x^4), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(5/2)/x^4/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

integral((b^2*x^4 + 2*a*b*x^2 + a^2)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)/(d*x^6 + c*x^4), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b x^{2}\right )^{\frac {5}{2}}}{x^{4} \sqrt {c + d x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(5/2)/x**4/(d*x**2+c)**(1/2),x)

[Out]

Integral((a + b*x**2)**(5/2)/(x**4*sqrt(c + d*x**2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(5/2)/x^4/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^(5/2)/(sqrt(d*x^2 + c)*x^4), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (b\,x^2+a\right )}^{5/2}}{x^4\,\sqrt {d\,x^2+c}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2)^(5/2)/(x^4*(c + d*x^2)^(1/2)),x)

[Out]

int((a + b*x^2)^(5/2)/(x^4*(c + d*x^2)^(1/2)), x)

________________________________________________________________________________________